Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor.
نویسندگان
چکیده
BACKGROUND There is an essential demand for tissue engineered autologous small-diameter vascular graft, which can function in arterial high pressure and flow circulation. We investigated the potential to engineer a three-layered robust and elastic artery using a novel hemodynamically-equivalent pulsatile bioreactor. METHODS AND RESULTS Endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts were harvested from bovine aorta. A polyglycolic acid (PGA) sheet and a polycaprolactone sheet seeded with SMCs, and a PGA sheet seeded with fibroblast, were wrapped in turn on a 6-mm diameter silicone tube and incubated in culture medium for 30 days. The supporting tube was removed, and the lumen was seeded with ECs and incubated for another 2 days. The pulsatile bioreactor culture, under regulated gradual increase in flow and pressure from 0.2 (0.5/0) L/min and 20 (40/15) mm Hg to 0.6 (1.4/0.2) L/min and 100 (120/80) mm Hg, was performed for an additional 2 weeks (n=10). The engineered vessels acquired distinctly similar appearance and elasticity as native arteries. Scanning electron microscopic examination and Von Willebrand factor staining demonstrated the presence of ECs spread over the lumen. Elastica Van Gieson and Masson Tricrome Stain revealed ample production of elastin and collagen in the engineered grafts. Alpha-SMA and calponin staining showed the presence of SMCs. Tensile tests demonstrated that engineered vessels acquired equivalent ultimate strength and similar elastic characteristics as native arteries (Ultimate Strength of Native: 882+/-133 kPa, Engineered: 827+/-155 kPa, each n=8). CONCLUSIONS A robust and elastic small-diameter artery was engineered from three types of vascular cells using the physiological pulsatile bioreactor.
منابع مشابه
An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery
With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...
متن کاملSmall Diameter Blood Vessels Bioengineered From Human Adipose-derived Stem Cells
Bioengineering of small-diameter blood vessels offers a promising approach to reduce the morbidity associated with coronary artery and peripheral vascular disease. The aim of this study was to construct a two-layered small-diameter blood vessel using smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from human adipose-derived stem cells (hASCs). The outer layer was construct...
متن کاملFabrication of Mouse Embryonic Stem Cell-Derived Layered Cardiac Cell Sheets Using a Bioreactor Culture System
Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system...
متن کاملEvaluation of Diameter Changes, Stress-strain Elastic Modulus and Stiffness in Normal and Atherosclerotic Common Carotid Arteries in Both Sex Based on End Pressure Variation
Evaluation of elastic properties of major arteries is subject of great interest with respect to the development of vascular diseases. In this study changes in diameter and cross-sectional area, stress-strain elastic modulus and stiffness of the common carotid arteries in healthy and atherosclerotic women and men were evaluated by using indirect end pressure changes. Variations in diameter and c...
متن کاملTorsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation
In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 118 14 Suppl شماره
صفحات -
تاریخ انتشار 2008